Suppression of algae by solid polymer electrolyte (spe) membrane-based electrolysis

Gurminder Sardool ^{1*}, Yoshiteru Hamatani ¹, Megat Johari Megat Mohd Noor ¹, Motoo Utsumi ², Masafumi Goto ^{1,2}, Norio Sugiura^{1,2}, Zaini Ujang^{3,4}

Corresponding author: Gurminder Sardool, e-mail: gurminss@yahoo.com

- ¹ Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia
- ² Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- ³ Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia
- ⁴ Office of Secretary-General, Ministry of Higher Education, Malaysia

Abstract

One of the challenges in the remediation of high-temperature tolerant algae is the reduced efficiencies of some technologies during high temperatures. Persistent cyanobacteria species such as *Aphanizomenon* sp. and *Cylindrospermopsis* sp. occur in the tropics as well as during summer in the temperate regions. This study introduces a solid polymer electrolyte (SPE) membrane-based electrolysis as an Advanced Oxidation Technology (AOT) to suppress persistent algae in high temperatures. Suppression of *Aphanizomenon* sp. by electrolysis was compared at both room (25°C) and warm temperatures (35°C). Suppression rate constants achieved at 25°C and 35°C were -0.1486 \pm 0.0592 day⁻¹ and - 0.1269 \pm 0.0805 day⁻¹, respectively. Based on Tukey post-hoc comparison statistical test, there was no significant difference between suppression rates at each 25°C and 35°C. This membrane-based electrolysis showed strong potential in remediating high-temperature tolerant and persistent algal species such as *Aphanizomenon* sp. which are difficult to suppress through conventional water treatment processes.

Keywords: algae, cyanobacteria, suppression, remediation, electrolysis, membrane